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Abstract 
 
The proliferation of whole-genome sequencing has transformed our ability to study how 

rare variants contribute to health and disease. This creates new opportunities to map 

disease modifying genes, resolve variants of unknown significance and to discover the 

aggregate effects of hidden rare variant associations on biological pathways and cell 

types. With this, there is an increasing need for accessible user-friendly data 

infrastructures and software tools that efficiently store, query, analyze and interpret these 

data. We developed RVAT (Rare Variant Association Toolkit) as a one-stop solution to 

address these needs and perform a comprehensive and customizable range of rare 

variant analyses and visualizations. RVAT is embedded in the Bioconductor ecosystem 

and uses a compressed out-of-memory data structure based on SQLite to facilitate 

efficient integration of large sequencing datasets with variant and sample annotations. 

The file format is complemented by object types and functions that support single variant, 

gene level, gene partitioning and gene set analyses through both R and command-line 

interfaces. We demonstrate the utility of RVAT in bridging the gap between the discovery 

and interpretation of rare variant associations using case studies wherein we recover 

mutation hotspots linked to amyotrophic lateral sclerosis (ALS) and reveal biologically 
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relevant gene sets and cell-types associated with health-related traits in UK biobank 

sequencing data. 

Introduction 
 
Recent years have seen a rapid rise in the number, size and applications of whole-

genome (WGS) and whole-exome (WXS) datasets. While the identification of disease-

causing rare variants used to be confined to linkage analysis in Mendelian disorders, the 

advent of these sequencing datasets has enabled the systematic identification of rare 

variants in Mendelian and non-Mendelian disorders alike. These include a wide range of 

diseases such as bipolar disease, diabetes, breast cancer, Alzheimer’s disease and 

Crohn’s disease1–5 as well as health-related and molecular traits such as BMI, smoking, 

lipid levels and protein levels6–9. Similarly, our group has focused on using rare variant 

analyses to discover susceptibility genes for neurodegenerative disorders including ALS 

and Parkinson’s disease10–13, work which has led us to pinpoint and address key 

challenges inherent in identifying rare variants in large sequencing datasets.  

    Though rare variant analyses share many concepts and challenges with common 

variant GWAS, there are notable distinctions to consider. The first is having to handle and 

analyze a considerably larger number of variants, as the vast majority of human variants 

are rare14. This not only presents challenges in terms of managing and processing larger 

volumes of data but also necessitates tailored analytical approaches. Secondly, while 

single variant tests conventionally performed in GWAS have also proven useful in the 

context of certain rare variants, they often lack the statistical power required to identify 

associations among the rarest variants such as singletons. Therefore, single variant tests 

are typically complemented or replaced by gene- or region-based tests in which variants 

are tested jointly across genes or other functional units of interest15. A key aspect of these 

tests is prioritizing so-called “qualifying variants”15.  This prioritization process increases 

power to discover disease associations by filtering out benign genetic variants and 

technical artifacts through the use of an ever expanding array of variant effect predictions 

(VEP), quality control metrics and minor allele frequency (MAF) thresholds15.  
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    Together, several challenges therefore emerge, including the management and 

querying of large sequencing datasets (often terabyte-sized), the integration of complex 

variant and sample annotations, performing a variety of rare variant tests and downstream 

analyses, all typically necessitating the unifying of disparate data formats and software 

tools. Moreover, a significant challenge lies in the interpretation of rare variant signals 

including fine-mapping gene-based associations, resolving variants of unknown 

significance (VUS) as well as disentangling the contribution of rare variants beyond 

individual functional units, such as biological pathways and cell types.  

    In this manuscript we describe how RVAT was designed to mitigate these challenges 

and provide a low learning curve and accessible interface that supports a wide range of 

rare variant analyses on both compute clusters and local computers. Also central to the 

RVAT framework are novel features focused on the fine-mapping and interpretation of 

rare variant signals. These include both supervised and unsupervised methods to identify 

and visualize mutation hotspots and a comprehensive suite of rare variant gene set 

analyses. We illustrate these features through case studies in which we pinpoint mutation 

hotspots in amyotrophic lateral sclerosis (ALS) and uncover relevant biology in several 

health-related traits through rare variant gene set analyses in the UK biobank.  

 

Methods 

Case study 1 
 
Data assembly, processing, and quality control was performed as described in Hop et 

al.13. Variants were annotated using snpEff16, dbscSNV17 and Ensembl Release 105 gene 

models18. Variants were classified as loss of function (LOF) when predicted by snpEff to 

have a high impact (including nonsense mutations, splice acceptor/donors and frameshift 

mutations) or predicted as potentially splice-altering by dbscSNV ('ada' or 'rf’ score > 0.7). 

Variants were classified as having moderate impact when predicted as such by snpEff 

(including missense mutations, inframe deletions and UTR truncations).  

https://www.zotero.org/google-docs/?wPdvkF
https://www.zotero.org/google-docs/?wPdvkF
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    For the domain-based analyses, protein coordinates for Interpro domains, coiled coils, 

transmembrane helices, low complexity regions, and cleavage sites were retrieved from 

Ensembl version 105 (http://dec2021.archive.ensembl.org/biomart/martview/)18. For each 

transcript, variants were annotated to domains by remapping both the domain coordinates 

and variant positions to coding sequence (CDS) relative coordinates using the 

mapToCDS method. Variants up to 12bp from the coding sequence border (introns and 

UTRs) were mapped to the respective border (exonPadding = 12). To generate spatial 

clusters, the spatialClust method was applied to the CDS-relative positions. We used a 

sliding window step of 30 variants and an overlap of 15 variants as parameters for the 

clustering algorithm. Gene-based variant sets were generated using the buildVarSet 

method.  

    Region-based burden tests (across the gene, domains, or spatial clusters) were 

performed using firth logistic regression, testing for an association between case-control 

status and the total number of minor alleles per sample per gene (burden score). Sex, ten 

principal components, and the total number of qualifying synonymous variants in each 

individual were included as covariates. For the gene-based tests, we additionally 

performed SKAT (robust version, ‘skat_robust’ in RVAT) and ACAT-v (SPA-corrected, 

‘acatvSPA’ in RVAT)19,20.  

 

Case study 2 
 
Exome test-statistics for the following phenotypes were downloaded from Genebass21 

(https://genebass.org/): bone mineral density (phenocode = 

bone_mineral_density_custom), white matter integrity of tapetum (phenocode = 25439), 

osteoporosis (phenocode = 131964), LDL (phenocode = 30780) and red blood cellcounts 

(RBC; phenocode = 30010). We focused on the pLoF SKAT-O results.  

 

Gene set analysis. Ontology gene sets (C5) were downloaded from MSigDb 

(https://www.gsea-msigdb.org/gsea/msigdb)22. Gene sets were imported into the RVAT 

geneSetFile format using the buildGeneSet method. For each phenotype, we performed 

competitive GSA (one-sided tests) using the geneSetAssoc method, adjusting for total 

https://app.genebass.org/
https://www.gsea-msigdb.org/gsea/msigdb
https://app.genebass.org/
https://www.gsea-msigdb.org/gsea/msigdb
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CDS length and the number of variants in the gene. Results were visualized using the 

densityPlot method.  

 

Cell-type enrichment analysis. Processed single-cell RNA sequencing as used in the 

FUMA web app23 were downloaded from: https://github.com/Kyoko-

wtnb/FUMA_scRNA_data. For each phenotype and single-cell RNA sequencing dataset, 

we performed cell-type enrichment analyses (one-sided tests) using the geneSetAssoc 

method, adjusting for the average expression across cell-types in addition to CDS length 

and the number of variants in the gene. Expression values were limited to 10 standard 

deviations from the mean.  
 

Results 

gdb format: efficient storage and retrieval of genotypes and annotations 
 
RVAT efficiently stores large sequencing datasets, along with related sample and variant 

annotations, in a novel file format named gdb. The gdb format is built upon the widely-

used SQLite database engine (Figure 1). A gdb can be generated directly from a VCF file 

using the buildGdb method, allowing parallelization by processing the VCF file in chunks. 

Each variant is assigned a unique indexed identifier (‘VAR_id’) to facilitate rapid queries, 

while sample genotypes are compressed per variant for efficient storage. As shown in 

more detail in the 'Performance' section, the resulting gdb-file is approximately 80 times 

smaller than a gz-compressed VCF file. Being a fully relational database, the gdb 

seamlessly integrates the genotype data with a wide array of annotations (e.g. variant 

effect predictions and sample phenotypes), whilst efficiently performing complex queries, 

including combinations of table joins, filtering, and grouping operations. These operations 

are facilitated through easy-to-use R methods such as uploadAnno, getAnno, getCohort 

and getGT, while advanced users can also directly execute SQL queries either via the 

command-line or through R SQL interfaces like RSQLite and dbplyr. Using the subsetGdb 

method, users can export subsets of a gdb, while retaining all links between genotype 

data and imported annotations. This simplifies the extraction of prioritized genes or 

https://github.com/Kyoko-wtnb/FUMA_scRNA_data
https://github.com/Kyoko-wtnb/FUMA_scRNA_data
https://github.com/Kyoko-wtnb/FUMA_scRNA_data
https://github.com/Kyoko-wtnb/FUMA_scRNA_data
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genomic regions for data sharing or subsequent in-depth exploratory analyses on a local 

machine. Together, the gdb format conveniently facilitates both large-scale analyses (i.e. 

on a high-performance cluster) as well as targeted, interactive queries.  

 

 

 
Figure 1. Schematic representation of the gdb file format. The gdb file can be created directly 

from a vcf file using the buildGdb method. Genotypes are compressed per-variant, and each 

variant is assigned a unique indexed identifier ('VAR_id') to enable rapid queries. Integration of 

sample and variant annotations (such as variant effect predictions and sample phenotypes) are 

easily integrated in the gdb using the uploadAnno/uploadCohort methods, while the 

getCohort/getAnno/getGT methods allow for complex queries including table joins, filtering, and 

grouping. The gdb-file format is complemented by an extensive range of rare single variant, 

region, gene and gene set analyses and visualizations available through the RVAT R and 

command-line interfaces. 
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genoMatrix class: intuitive handling of genotypes and annotations in R 

Sequencing datasets often greatly exceed available computer memory, yet researchers 

frequently need to extract specific variants, regions, or genes of interest for further 

exploration, analysis, or visualization. To this end, RVAT allows rapid and easy access to 

genotypes and annotations of interest within the widely used R programming language, 

in which users can leverage both specialized RVAT methods described in this paper as 

well as the wider visualization and statistical capabilities of R. The RVAT genoMatrix class 

represent relevant subsets of the gdb in R (Figure 2), and is built upon the BioConductor 

SummarizedExperiment class24 that is specifically designed to store and manage 

rectangular biological data along with sample- and feature-level metadata in a 

synchronized single instance. By using this and other standard BioConductor classes and 

methods, RVAT ensures an intuitive user experience and interoperability with other 

BioConductor packages. Genotypes can be retrieved from a gdb using the getGT method 

which returns variant, sample and genotype data as a single genoMatrix object. Users 

can specify the genome build in order to correctly code the genotypes in the non-

pseudoautosomal regions of the sex chromosomes. A wide array of operations can be 

performed on a genoMatrix object, targeting specific cells, variants, samples, or entire 

tables. These include operations like variant and sample filtering, genotype masking, 

calculating minor allele frequencies, conducting single variant and aggregate association 

tests, generating burden scores, retrieving variant carriers and summarizing metrics such 

as call rate or carrier frequency across different groups.  
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Figure 2. Schematic representation of the genoMatrix class. The genoMatrix class extends 

the BioConductor SummarizedExperiment class. Code snippets in bold represent methods 

specific to the genoMatrix class, code snippets in roman represent standard 

SummarizedExperiment methods that are inherited by the genoMatrix class. The rows of the 

genoMatrix class represent variants and the columns represent samples. Variant info is 

accessible through the rowData method and by default includes variant ploidy, variant weights 

and allele frequencies (automatically updated when samples are subsetted), along with user-

supplied annotations such as variant pathogenicity scores (CADD in this example). Sample info 

is accessible through the colData method, which includes the mandatory sex information along 

with user-supplied sample phenotypes. A wide array of operations can be performed on a 

genoMatrix object, including operations like variant and sample filtering, genotype masking and 

imputation, conducting single variant and aggregate association tests, generating burden scores, 

and summarizing metrics such as call rate or carrier frequency across different groups. 
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varSets: define variant sets based on genomic annotations or unsupervised 

clustering 

A key feature of RVAT is that it provides a unified interface for various types of aggregate 

variant tests. The first step in such analyses consists of defining sets of variants passing 

user-defined filters (e.g. based on functional consequence or minor allele frequency) 

across genomic regions of interest (e.g. genes, protein domains or clusters of variants). 

Consequently, this step typically involves the tedious process of processing, parsing, 

combining multiple sources of genomic annotations and variant effect predictions (VEP) 

RVAT reduces all this into an intuitive and fast workflow. First, the mapVariants method 

efficiently maps variants in the gdb onto genomic features of interest provided in standard 

formats such as bed, gff and gtf (used by e.g. Ensembl and RefSeq). Similarly, variant 

effect predictions can be incorporated in the gdb and the RVAT website includes tutorials 

on generating and integrating established tools such as snpEff, dbNSFP and 

AlphaMissense16,25,26. Second, the buildVarSet method then generates variant sets 

based on these feature and annotation tables, which can be weighted by features such 

as MAF and predicted pathogenicity. In addition to accommodating grouping variants by 

genomic features, RVAT also allows for partitioning the genome using the spatialClust 

method that implements an unsupervised spatial clustering algorithm  reported by 

Loehlein-Fier et al.27. Variant sets are stored in the RVAT varSet format and collections 

of varSets (e.g. all genes, various filters) can be stored on-disk in the varSetFile format. 

This avoids the need to hold a large number of variant sets in memory, enables their 

reuse for subsequent analyses or queries, and enhances reproducibility. Genes and/or 

annotations of interest can be easily retrieved from a varSetFile using the getVarSet 

method. Variant sets can then be passed on to the getGT method to load the genotypes 

for the variant set(s) of interest or can be used as input for downstream analyses such as 

association tests.  
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assocTest: a unified interface for single variant and aggregate association 

testing 

The assocTest method provides a unified and flexible interface to perform both single and 

aggregate variant tests. It implements a comprehensive set of statistical tests including 

widely used methods such as firth-based logistic regression (burden), the SKAT variance 

component test, the SKAT-O omnibus test and the Cauchy distribution based ACAT-v 

method19,20,28,29. Moreover, it supports different genetic models (i.e. additive, recessive 

and dominant) and allows for variant weighting based on annotations or minor allele 

frequency. In addition to existing statistical tests, a re-implementation of ACAT-V is 

included that is robust to case-control imbalance through either saddle-point-

approximation (SPA) or firth correction30,31. Furthermore, we implemented a fast 

resampling procedure to calculate permutation-based empirical P-values for ACAT-v as 

well as other tests. Association tests can be performed either interactively on a 

genoMatrix in an interactive R session, or from the command-line allowing for 

(parallelized) iteration through multiple variant sets. Results from these analyses are 

stored in the rvatResult format, which is an extension of the BioConductor DataFrame 

class. Test-statistics in an rvatResult object can be visualized using (labeled) manhattan, 

qq- and forest plots. Finally, P-values in an rvatResult can be combined through a flexible 

implementation of the ACAT method20, which allows users to combine P-values across, 

for example, complementary statistical tests, MAF bins, annotations or genomic features 

(e.g. combine transcript test-statistics into one P-value per gene).  

geneSetAssoc: rare variant gene set and cell-type enrichment analyses 

Gene set and cell-type enrichment analyses can aid in uncovering relevant biological 

mechanisms beyond what can be identified among single variants or genes.  

RVAT implements a comprehensive set of rare variant gene set analysis methods 

(GSA), supported by an infrastructure to import and manage collections of gene sets. 

 

Importing and managing gene sets. Gene sets can be imported into R from the GMT 

format that is used in The Molecular Signatures Database (MSigDB)22, one of the most 

https://www.zotero.org/google-docs/?9Txula
https://www.zotero.org/google-docs/?FFkrvl
https://www.zotero.org/google-docs/?9Txula
https://www.zotero.org/google-docs/?FFkrvl
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widely used repositories that includes tens of thousands of gene sets including, among 

others, ontology (e.g. GO, HPO), oncogenic and cell-type signature gene sets. 

Alternatively, users can import custom datasets including user-curated datasets such as 

gene co-expression modules defined through WGCNA analyses of custom RNAseq 

datasets, lists of known disease genes or even complete single cell gene expression 

matrices for use in cell type enrichment analyses. After importing the gene sets, they can 

be easily managed, stored and retrieved using the geneSet format, analogous to the 

varSet format discussed earlier.  

    Broadly, the implemented GSA methods can be divided into competitive and self-

contained tests, where the former tests whether genes in the gene set are more 

associated with the phenotype than genes outside the gene set, while the latter jointly 

tests whether genes in the gene set are associated with the phenotype without 

considering genes outside the set32. Consequently, through testing for an enrichment 

relative to the genes outside the gene set, competitive GSA controls for polygenicity as 

well as biases such as confounding and technical variability. Self-contained tests, on the 

other hand, are generally more powerful but may result in inflated test-statistics in case 

of polygenicity or residual biases in the data. 

 

Competitive GSA. The geneSetAssoc method implements two types of competitive GSA 

methods which can be performed directly on results stored in an rvatResult. First, 

significant genes can be tested for overrepresentation among gene sets using Fisher’s 

exact test, where non-significant genes are included as the background. The drawback 

of this method is that it relies on a P-value threshold, and therefore reduces the 

quantitative information contained in the test-statistics to a binary variable (significant or 

not). As a result, enrichment analyses of this kind fail to detect subtle effects across a 

larger number of genes where each individual gene fails to reach genome-wide 

significance by itself. Therefore, we also implemented a competitive method that doesn’t 

rely on a P-value threshold, but instead directly tests for an association between the 

strength of association (inverse normal-transformed P-values) and pathway membership 

using linear regression. Such an approach is commonly called functional class scoring 

(FCS) in literature, and our approach is similar to that implemented in MAGMA for 
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GWAS33,34. Covariates can be included to account for potential confounding factors such 

as gene size and the number of variants. Potential gene-gene correlations can be 

accounted for using mixed linear models35, in which the gene correlations can be 

estimated through correlation among burden scores or using a permutation approach. 

Additionally, cell-type enrichment analyses are supported in the same framework, testing 

for an association between test-statistics and gene expression values in cell-types of 

interest.  

 

Self-contained GSA. Self-contained gene set analyses have been performed in several 

recent large whole-exome studies in the form of gene set burden analyses1,36,37. Gene 

set burden analyses extend the rationale behind gene burden tests to sets of genes, 

aggregating variants across gene sets rather than single genes. These types of analyses 

can be computationally demanding since the number of variants to aggregate, especially 

for large gene sets, is often many times larger than in single gene analyses. To address 

this, we implemented a two-step approach in RVAT. In the first step, burden scores are 

generated for each gene and stored in a compressed format. In the second step, gene 

set analyses are performed by aggregating the gene burden scores for each gene set, 

followed by testing for an association between the gene set burden score and the 

phenotype of interest.  

 

Together, RVAT facilitates convenient import and managing of gene sets, and provides 

a wide range of GSA methods tailored to rare variant analyses.  
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Case studies 

Case study 1: Recovering mutation hotspots in ALS 
 
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a 

substantial genetic component38,39. Rare variants in over 30 genes have been linked to 

ALS, highlighting the genetic heterogeneity of the disease. In some ALS-linked genes, 

such as SOD1, pathogenic variants have been observed across the entire length of the 

gene, while in others, such as FUS and TARDBP, pathogenic variants appear to be 

concentrated in specific portions of the gene40. Identifying such mutation hotspots is 

highly relevant for unraveling pathophysiological mechanisms, improving genetic 

diagnostics and therapeutic development. Here we showcase how RVAT facilitates the 

identification of mutation hotspots using both a functional domain-based approach and 

an unsupervised spatial clustering approach. 

    For this case study, we combined WGS data of 9,600 individuals included in Project 

MinE with WXS data of 50,000 individuals included in the UK Biobank. Processing and 

quality control of the data was performed using an RVAT workflow that includes strict 

sample- and variant-level variant control and a tailored approach to eliminate batch 

effects in aggregated sequencing data (details of the workflow are described in a recent 

publication from our group13). This resulted in a total of 6,436 ALS cases and 48,436 

controls after quality control (see Methods)41–43. We focused our inquiry on two known 

ALS genes: SOD1 and FUS. We employed two distinct approaches to identify mutation 

hotspots in these genes: a supervised approach in which we grouped variants according 

to overlap with functional protein domains, and an unsupervised approach that clustered 

variants using a spatial clustering algorithm27. 

    For both approaches, we first remapped the variants to coding sequence coordinates 

(CDS) using the mapToCDS RVAT method. Intronic variants within 12 base pairs of an 

exon border were mapped to the corresponding border. For the domain-based approach 

we obtained coordinates for Interpro domains, coiled coils, transmembrane helices, low 

complexity regions, and cleavage sites from Ensembl (v. 105), and mapped variants to 

the domains based on the CDS coordinates obtained previously. In the spatial clustering 

approach, consecutive groups of variants that colocalize along the coding sequence using 
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the spatialClust method. Both approaches result in variant sets stored in the varSet 

format, either for each cluster, or each domain. Subsequently, these variant sets were 

used as input for the assocTest method to test for an excess of rare (MAF<0.001) non-

synonymous variants using firth logistic regression.  

    In FUS, we observed a strong enrichment towards the C-terminus of the coding 

sequence (Figure 3). Specifically, the 3’-end spatial cluster showed a substantially 

stronger association (OR = 7.05, P = 2.93 x 10-7) than seen in the whole-gene analysis 

(OR = 1.78, P = 7.08 x 10-4). This finding persists after accounting for the number of tested 

clusters using the ACAT method (PACAT-clusters  = 1.47 x 10-6 vs. Pwholegene  = 7.08 x 10-4), 

confirming that the signal is localized. Moreover, in contrast to the whole-gene signal, the 

spatial cluster even reaches the typical multiple testing threshold used in exome-wide 

analyses (0.05/18000 = 2.8 x 10-6). These findings are in accordance with previous 

literature, which showed that pathogenic FUS mutations tend to cluster in the C-terminal 

end of the gene, where they are thought to disrupt nuclear import of FUS44.    

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. FUS mutation plot. The upper panel shows the coding sequence of FUS, with the y-

axis showing the -log10(P-value) for single variants. The panels below show the whole-gene, 

spatial clusters and domains respectively, colored by the -log10(P-value) of the Firth burden test.  
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    In contrast, for SOD1 the whole-gene analysis was highly significant (OR = 8.01, 1.1 x 

10-16, Figure S1), while no meaningful spatial clusters were identified (one cluster, 

containing all variants and thus identical to the whole-gene analysis), and no meaningful 

domain signals were identified (all but one spanned the (near-)entirety of the gene and 

thus also resembled the whole-gene analysis). This aligns with previous literature, as 

pathogenic mutations have been reported across the entire length of the gene45. 

    Together, this case study shows how the regional approaches implemented in RVAT 

successfully recover a proven mutation hotspot in ALS. Moreover, it is worth noting that 

the clustering approach may also prove useful for discovery of novel genes in a genome-

wide setting. In FUS, the clustering approach showed a higher sensitivity (accounting for 

the number of tested clusters) than the whole-gene burden test. We additionally evaluated 

the SKAT and ACAT-v tests, which are both more powerful than burden tests when the 

proportion of causal variants is low{Citation}. Although in this case SKAT indeed had a 

higher sensitivity than a whole gene burden analysis (PSKAT = 5.81 x 10-5, PACAT = 1.49 x 

10-3), burden testing at the level of spatial clusters was more sensitive than either, 

substantiating that it can provide a powerful alternative to identify genes driven by regional 

hotspots. 
 

Case study 2: Identification of biologically relevant gene sets and cell-types 
in the UK Biobank 

 

In this case study we perform competitive gene set analyses on published rare variant 

gene statistics, illustrating how biologically relevant sets of genes can be discovered 

beyond exome-wide significant single genes. We obtained pLoF gene test-statistics from 

the Genebass browser, which includes exome-wide rare variant gene statistics of 4,529 

phenotypes based WXS data of 394,841 individuals included in the UK Biobank21. 

Specifically, we focused on several traits highlighted in the corresponding article by 

Karczewski et al.: LDL-cholesterol, bone mineral density, red blood cell count and white 

https://www.zotero.org/google-docs/?3skYUx
https://www.zotero.org/google-docs/?3skYUx
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matter integrity. Ontology gene sets were downloaded from MSigDB22, and were imported 

into the RVAT geneSetFile format using the buildGeneSet method. Competitive GSA was 

performed using geneSetAssoc method, adjusting for the number of variants included in 

the gene and the total coding sequence length.  

 

Figure 4. RVAT gene set summary plots. Density plots showing the Z-score distributions 

(inverse normal transformed P-values) of (A) red blood cell counts (RBC) for the gene set 
‘Erythrocyte Inclusion Bodies’ and (B) bone mineral density for the gene set ‘Canonical WNT 

Signaling’. The distribution of the background genes and genes within the gene set are shown in 

orange and blue respectively. The upper panels show the Z-score distribution including all genes, 

whereas the lower panels show the Z-score distribution excluding exome-wide significant genes 

(P < 2.5 x 10-7). The vertical lines represent the mean Z-scores. In panel (A), the difference 

between Z-scores is large when including exome-wide significant genes but greatly diminishes 

upon rerunning the gene set analyses excluding them, thus indicating that the significant genes 

primarily drive the observed gene set signal. In panel (B) the Z-score difference largely remains 

upon excluding exome-wide significant genes, thus suggesting that a multitude of genes 

collectively drive the gene set association. 

https://www.zotero.org/google-docs/?LMXDR7
https://www.zotero.org/google-docs/?LMXDR7
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Numerous significant gene sets were identified (P < 3.3 x 10-6, Table S1), including many 

gene sets relevant to the respective traits. For example, the gene sets bone 

morphogenesis, WNT signaling, and ossification were associated with bone mineral 

density; genes related to polycythemia, increased hematocrit and oxygen binding were 

associated with red blood cell counts; genes related to sterol homeostasis, premature 

arteriosclerosis, and hypercholesterolemia were associated with LDL levels; and extrinsic 

component of (post-)synaptic membrane was associated with white matter integrity. We 

next sought to establish to what extent the identified gene sets were driven by exome-

wide significant genes, as gene set associations that are primarily driven by one or two 

genes, may not be sufficient to draw broad conclusions about the involvement of the entire 

gene set.To that end, we reran the gene set analyses, excluding genes passing the 

significance threshold employed by Karczewski et al. (P < 2.5 x 10-7)21. This showed that 

a substantial proportion of findings were primarily driven by a small number of significant 

genes (Figures S2-3). Examples include the RBC-associated gene sets ‘Erythrocyte 

Inclusion Bodies’ (Figure 4A, densityPlot method) and ‘Decreased mean corpuscular 

volume’ (Figure S4), as can be clearly observed from the Z-score distributions. On the 

other hand, several relevant gene sets remained significant, indicating that the observed 

association was not solely driven by individual genes, thus suggesting a multitude of 

genes collectively drive the gene set association. Examples include the bone density-

associated gene sets ‘Canonical WNT signaling’ (P = 3.59 x 10-7, Figure 4B) and 

‘Ossification’ (P = 4.26 x 10-6, Figure S4), both showing a clear mean shift in Z-scores 

that is not solely driven by a small number of genes. Among the top sub-significant genes 

in these gene sets were several relevant genes including LRP4 (P = 7.12 x 10-4; mediates 

bone formation inhibition and is  related to the highly significant gene LRP5), SOST (P = 

1.55 x 10-5; encodes the sclerostin protein), COL1A2 (P = 4.52 x 10-5; encodes the pro-

alpha2 chain of type I collagen) and MRC2 (P = 1.56 x 10-5; encodes a protein involved 

in extracellular matrix remodeling).  

https://www.zotero.org/google-docs/?Vgu2nQ
https://www.zotero.org/google-docs/?Vgu2nQ
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Figure 5. Single cell-type enrichment analyses. Quantile-quantile (qq) plots showing observed 

single cell enrichment test statistics (-log10(P-value)) versus expected −log10 (P-values) under the 

null model for (A) red blood cell counts (RBC) (B) bone mineral density. Labels indicate the 

experiment name and cell-type respectively, separated by a colon. The red line indicates the 

significance threshold (P < 2.9 x 10-5). 

 

In a similar vein, we performed single-cell RNAseq (scRNA-seq) enrichment analyses 

using 51 publicly available scRNA-seq datasets23. Enrichment analyses were performed 

using the geneSetAssoc method, adjusting for average expression across cell-types in 

addition to the covariates employed in GSA. This revealed several significantly enriched 

cell-types relevant to the traits studied (P < 2.9 x 10-5; Figure 5, Figure S5 and Table S2). 

These include, among others, erythroblast cell subtypes (enriched for gene level 

association signals with red blood cell counts, P = 4.4 x 10-6), endothelial tip (enriched for 

gene level association signals with bone mineral density, P = 1.8 x 10-8) and liver 

hepatocytes (enriched for gene level association signals with LDL levels, P = 5.4 x 10-6). 

While the liver hepatocyte enrichment in genes exhibiting rare variant associations with 

LDL was primarily driven by exome-wide significant genes, several other enriched cell-

types were not (e.g. the endothelial tip and erythroblast enrichments), suggesting a 

concentration of rare variant signal in relevant genes that have yet to reach exome-wide 

significance (Figure S6). 

https://www.zotero.org/google-docs/?Bhbcjw
https://www.zotero.org/google-docs/?Bhbcjw
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Together, these analyses highlight how RVAT’s rare variant competitive gene set and 

cell-type enrichment analyses can aid in uncovering relevant biology beyond single 

genes.  

Performance 
 
We tested the performance of RVAT by benchmarking several key aspects of RVAT using 

an exome dataset (Project MinE42 and UK Biobank43), consisting of ~60,000 samples and 

~15 million variants (59,546 samples and 14,889,039 variants respectively). We first 

converted the gz-compressed vcf (3.7TB) to the RVAT gdb format, which completed in 

734 CPU hours and required less than 8GB RAM on a computer cluster equipped with 

AMD EPYC 7702P 64-Core Processors. The resulting gdb file was significantly smaller, 

approximately 80x, with a size of 47GB compared to the input gz-compressed VCF-file of 

3.7TB. We should note that the gdb format is not lossless as it retains variant info and 

genotype calls, while omitting other per-call metrics such as genotype quality and depth. 

None of the RVAT workflows, however, require these metrics.  

    To demonstrate the efficiency of RVAT, we show that the equivalent of a modern laptop 

is sufficient to perform a range of analyses on the ~60K samples and ~15M variants 

included in the gdb. All analyses below were performed on a single 2.60GHz processor 

(6 cores) with 16GB of RAM. First, we used the mapVariants method to map all 15M 

variants to Ensembl gene models (gff format), which completed within 2 minutes (114 

seconds). Subsequently, the uploadAnno method was used to map variant effect 

predictions generated by snpEff16 and dbscSNV17 onto the gdb, which took approximately 

7 minutes (431 seconds) 

    With the gene models and annotations in place, we generated non-synonymous variant 

sets for all protein-coding genes using the buildVarSet method, which took less than a 

half a minute (22 seconds). These variant sets were then used as input for exome-wide 

burden tests, employing firth logistic regression to test for an association between 

aggregated rare variant count (MAF < 0.001) and MND status (motor neuron disease). 

Burden tests were performed for a total of 17,149 protein-coding genes, and took 

approximately 11.3 hours, averaging around 2.4 seconds per gene. The resulting test-

https://www.zotero.org/google-docs/?JDbRWk
https://www.zotero.org/google-docs/?QX1XYJ
https://www.zotero.org/google-docs/?JDbRWk
https://www.zotero.org/google-docs/?QX1XYJ
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statistics were used as input for competitive GSA across 15,473 ontology gene sets 

(MSigDB22), which took less than a minute to complete (47s). Finally, we benchmarked 

loading genotypes into a genoMatrix in R, for interactive downstream analyses or lookups, 

which took about half a second for 100 variants and ~60K samples. 

    Combined, the above benchmarks show that various steps involved in an exome-wide 

burden analysis, such as variant annotation, variant set generation, burden analyses and 

gene set analysis, can be completed overnight on a single CPU.  To speed up analyses 

further and/or accommodate larger datasets, RVAT enables parallelization via its 

command-line interface (CLI). The RVAT website provides tutorials and pipelines 

demonstrating how to use RVAT in parallel on a computer cluster. 

Discussion  
 

Through a series of example use cases we have demonstrated that RVAT addresses 

unmet needs for functions that enable flexible and interactive mining of large genetic 

datasets for analyses of rare variant contributions to health and disease.  

    The RVAT gdb file format is built upon SQLite, a highly efficient and reliable database 

engine that is widely used across scientific disciplines and industries. Consequently, the 

gdb file format shares the strengths of a relational database, providing consistent storage 

of multiple linked data tables and facilitating complex queries that involve various 

combinations of these data types. We demonstrate that the gdb format is well-suited for 

storing and analyzing genetic data, which typically involves a variety of variant 

annotations, gene annotations, variant pathogenicity scores and phenotypic / clinical data 

for individual subjects. The indexed per-variant genotype compression ensures that the 

gdb is both storage-efficient (~80x smaller than a compressed vcf-file) while facilitating 

rapid genotype querying (loading 100 variants for 60K samples into R takes about half a 

second). gdb files are also highly portable and support easy resharing of linked data fields 

while subsetting operations make it easy to export reduced gdb for regions of interest 

while still maintaining all desired links between genotype, variant and sample level data. 

    RVAT avoids specific hardware dependencies, and we demonstrate that the framework 

is sufficiently lightweight and efficient to enable genome-wide rare variant association 

https://www.zotero.org/google-docs/?CY0m7Z
https://www.zotero.org/google-docs/?CY0m7Z
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screens of large sample numbers on the equivalent of a modern laptop. We also provide 

extensive documentation and multiple tutorials with example data to support ease of use. 

Moreover, RVAT is written in the open-source R programming language and both its 

functions and object types are fully integrated with the Bioconductor ecosystem. This 

decreases the learning curve and time investments needed by users to start new 

analyses and to further extend the functionalities of RVAT for niche applications with new 

custom scripts or other BioConductor packages. As example, in previous work we 

demonstrated that the core functionalities of unpublished RVAT prototypes enabled 

successful large scale rare variant association analyses of tens of thousands of 

subjects10–13. These studies respectively yielded the discovery of genes with high effect 

size associations to amyotrophic lateral sclerosis and Parkinson’s disease. A key strength 

in the use of RVAT within these studies was the ease of deploying new subcohort 

analyses, adaptive variant quality control and target gene sensitivity analyses that 

enabled us to overcome confounding technical artefacts.  

    In this study we also further extended RVAT with gene partitioning and gene 

aggregating analyses to tackle key challenges in not only the discovery of rare variant 

associations, but also the correct interpretation of these associations. The first case study 

showcases how relevant mutation hotspots can be identified by utilizing several 

integrated components of RVAT, including spatial variant clustering, domain mapping, 

rare variant testing and RVAT visualizations. This framework enables researchers to fine-

map genetic risk and estimate variant effect sizes within subgenic regions. Our results 

demonstrate how this can influence the interpretation of variants of unknown significance, 

and thus models to be considered for genetic testing and experimental analyses of 

disease gene biology. The second case study illustrates how our rare variant adaptations 

of competitive gene set and cell-type enrichment analyses can use publicly available 

summary statistics to reveal relevant biology beyond what is found in individual genes. 

While gene and cell-type analyses are widely applied in GWAS32, their adoption in the 

context of rare variant analyses is limited. RVAT addresses this gap by providing a 

comprehensive framework for managing and importing gene sets, performing gene-set 

and cell-type enrichment analyses, and visualizing the results. 
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    The RVAT package has some limitations. First is that simultaneous writing to a gdb by 

multiple users is not currently possible. This ensures that conflicting user operations do 

not cause data corruption but does introduce a requirement for coordination amongst 

users wishing to simultaneously upload new annotations to a shared gdb. RVAT is also 

specifically optimized for analyses relating to rare variant association testing. As such, 

while it is possible to use RVAT within custom code to analyze variant segregation in 

families, we have not optimized RVAT for this purpose. Finally, tools such as Regenie 

efficiently calculate regression offsets that are reported to aid rare variant analyses of 

large-scale biobank data. If desired, RVAT provides functionality to import these offsets 

generated using a dedicated tool such as Regenie. In this setting users can adjust their 

analyses for these offsets while still leveraging unique advantages of RVAT including its 

data structure, convenient R interface, optimized data querying functions and unique 

functionalities such as gene partitioning and geneset / cell type analyses. 

    As part of on-going work additional functionalities are being incorporated in future 

versions of RVAT. These will include an interactive result browser, analyses to support 

survival analyses, additional analyses for unsupervised variant clustering and additional 

analyses tailored to addressing challenges of studying rare variation in the non-coding 

genome. RVAT also already incorporates functions to facilitate use cases beyond the 

scope of this study, including analyses of recessive disease models and sex-linked 

chromosomes, a dedicated CLI interface and features to support effective deployment on 

high-performance computing environments. Full details of these aspects as well as 

function documentation and tutorials with accompanying example datasets are available 

on the RVAT website (https://kennalab.github.io/rvat/).  
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Supplementary figures 
 

 
Figure S1. SOD1 mutation plot. The upper panel shows the coding sequence of SOD1, with 
the y-axis showing the -log10(P-value) for single variants. The panels below show the whole-
gene, spatial clusters and domains respectively, colored by the -log10(P-value) of the firth 
burden test.  
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Figure S2. Competitive GSA test statistics ( -log10(P-value)) excluding (y-axis) and including (x-
axis) significant (P < 2.5 x 10-7) genes for (A) bone mineral density (B) red blood cell counts (C) 
LDL levels (D) white matter integrity.  
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Figure S3. Number of significant gene sets (P < 3.3 x 10-6) identified per phenotype. 
 

 
 
Figure S4. Density plots showing the Z-score distributions of (A) bone mineral density for the 
GO gene set ‘Ossification’ and (B) red blood cell counts (RBC) for the HP gene set ‘Decreased 
Mean Corpuscular Volume’. The distribution of the background genes and genes within the 
geneset are shown in orange and blue respectively. The upper panels show the Z-score 
distribution including all genes, whereas the lower panels show the Z-score distribution 
excluding exome-wide significant genes (P < 2.5 x 10-7). The vertical lines represent the mean 
Z-scores.   
 



30 

 
 
 

Figure S5. Single cell-type enrichment analyses. Quantile-quantile (qq) plots showing 
observed single cell enrichment test statistics (-log10(P-value)) versus expected −log10 (P-
values) under the null model for (A) LDL-cholesterol (B) white matter integrity. Labels indicate 
the experiment name and cell-type respectively, separated by a colon. The red line indicates the 
significance threshold (P < 2.9 x 10-5). 
 

 
Figure S6. Single cell enrichment test statistics ( -log10(P-value)) excluding (y-axis) and 
including (x-axis) significant (Pgene < 2.5 x 10-7) genes for (A) bone mineral density (B) red blood 
cell counts (C) LDL levels (D) white matter integrity.  
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Supplementary tables 
 
Table S1: Gene set analysis results per trait. 
Table S2: Single cell enrichment analysis results per trait. 
 
 


