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Abstract

The proliferation of whole-genome sequencing has transformed our ability to study how
rare variants contribute to health and disease. This creates new opportunities to map
disease modifying genes, resolve variants of unknown significance and to discover the
aggregate effects of hidden rare variant associations on biological pathways and cell
types. With this, there is an increasing need for accessible user-friendly data
infrastructures and software tools that efficiently store, query, analyze and interpret these
data. We developed RVAT (Rare Variant Association Toolkit) as a one-stop solution to
address these needs and perform a comprehensive and customizable range of rare
variant analyses and visualizations. RVAT is embedded in the Bioconductor ecosystem
and uses a compressed out-of-memory data structure based on SQLite to facilitate
efficient integration of large sequencing datasets with variant and sample annotations.
The file format is complemented by object types and functions that support single variant,
gene level, gene partitioning and gene set analyses through both R and command-line
interfaces. We demonstrate the utility of RVAT in bridging the gap between the discovery
and interpretation of rare variant associations using case studies wherein we recover

mutation hotspots linked to amyotrophic lateral sclerosis (ALS) and reveal biologically
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relevant gene sets and cell-types associated with health-related traits in UK biobank
sequencing data.

Introduction

Recent years have seen a rapid rise in the number, size and applications of whole-
genome (WGS) and whole-exome (WXS) datasets. While the identification of disease-
causing rare variants used to be confined to linkage analysis in Mendelian disorders, the
advent of these sequencing datasets has enabled the systematic identification of rare
variants in Mendelian and non-Mendelian disorders alike. These include a wide range of
diseases such as bipolar disease, diabetes, breast cancer, Alzheimer’s disease and
Crohn’s disease'® as well as health-related and molecular traits such as BMI, smoking,
lipid levels and protein levels®-°. Similarly, our group has focused on using rare variant
analyses to discover susceptibility genes for neurodegenerative disorders including ALS
and Parkinson’s disease'®'3, work which has led us to pinpoint and address key

challenges inherent in identifying rare variants in large sequencing datasets.

Though rare variant analyses share many concepts and challenges with common
variant GWAS, there are notable distinctions to consider. The first is having to handle and
analyze a considerably larger number of variants, as the vast majority of human variants
are rare'*. This not only presents challenges in terms of managing and processing larger
volumes of data but also necessitates tailored analytical approaches. Secondly, while
single variant tests conventionally performed in GWAS have also proven useful in the
context of certain rare variants, they often lack the statistical power required to identify
associations among the rarest variants such as singletons. Therefore, single variant tests
are typically complemented or replaced by gene- or region-based tests in which variants
are tested jointly across genes or other functional units of interest's. A key aspect of these
tests is prioritizing so-called “qualifying variants”'®. This prioritization process increases
power to discover disease associations by filtering out benign genetic variants and
technical artifacts through the use of an ever expanding array of variant effect predictions
(VEP), quality control metrics and minor allele frequency (MAF) thresholds'®.



Together, several challenges therefore emerge, including the management and
querying of large sequencing datasets (often terabyte-sized), the integration of complex
variant and sample annotations, performing a variety of rare variant tests and downstream
analyses, all typically necessitating the unifying of disparate data formats and software
tools. Moreover, a significant challenge lies in the interpretation of rare variant signals
including fine-mapping gene-based associations, resolving variants of unknown
significance (VUS) as well as disentangling the contribution of rare variants beyond

individual functional units, such as biological pathways and cell types.

In this manuscript we describe how RVAT was designed to mitigate these challenges
and provide a low learning curve and accessible interface that supports a wide range of
rare variant analyses on both compute clusters and local computers. Also central to the
RVAT framework are novel features focused on the fine-mapping and interpretation of
rare variant signals. These include both supervised and unsupervised methods to identify
and visualize mutation hotspots and a comprehensive suite of rare variant gene set
analyses. We illustrate these features through case studies in which we pinpoint mutation
hotspots in amyotrophic lateral sclerosis (ALS) and uncover relevant biology in several

health-related traits through rare variant gene set analyses in the UK biobank.

Methods
Case study 1

Data assembly, processing, and quality control was performed as described in Hop et
al.3. Variants were annotated using snpEff', dbscSNV'” and Ensembl Release 105 gene
models'. Variants were classified as loss of function (LOF) when predicted by snpEff to
have a high impact (including nonsense mutations, splice acceptor/donors and frameshift
mutations) or predicted as potentially splice-altering by dbscSNV (‘ada’ or 'rf’ score > 0.7).
Variants were classified as having moderate impact when predicted as such by snpEff

(including missense mutations, inframe deletions and UTR truncations).
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For the domain-based analyses, protein coordinates for Interpro domains, coiled coils,
transmembrane helices, low complexity regions, and cleavage sites were retrieved from
Ensembl version 105 (http://dec2021.archive.ensembl.org/biomart/martview/)'8. For each
transcript, variants were annotated to domains by remapping both the domain coordinates
and variant positions to coding sequence (CDS) relative coordinates using the
mapToCDS method. Variants up to 12bp from the coding sequence border (introns and
UTRs) were mapped to the respective border (exonPadding = 12). To generate spatial
clusters, the spatialClust method was applied to the CDS-relative positions. We used a
sliding window step of 30 variants and an overlap of 15 variants as parameters for the
clustering algorithm. Gene-based variant sets were generated using the buildVarSet
method.

Region-based burden tests (across the gene, domains, or spatial clusters) were
performed using firth logistic regression, testing for an association between case-control
status and the total number of minor alleles per sample per gene (burden score). Sex, ten
principal components, and the total number of qualifying synonymous variants in each
individual were included as covariates. For the gene-based tests, we additionally
performed SKAT (robust version, ‘skat_robust’ in RVAT) and ACAT-v (SPA-corrected,
‘acatvSPA’ in RVAT)19.20,

Case study 2

Exome test-statistics for the following phenotypes were downloaded from Genebass?’
(https://genebass.org/): bone mineral density (phenocode =

bone_mineral_density_custom), white matter integrity of tapetum (phenocode = 25439),
osteoporosis (phenocode = 131964), LDL (phenocode = 30780) and red blood cellcounts
(RBC; phenocode = 30010). We focused on the pLoF SKAT-O results.

Gene set analysis. Ontology gene sets (C5) were downloaded from MSigDb
(https://www.gsea-msigdb.org/gsea/msigdb)??. Gene sets were imported into the RVAT

geneSetFile format using the buildGeneSet method. For each phenotype, we performed
competitive GSA (one-sided tests) using the geneSetAssoc method, adjusting for total
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CDS length and the number of variants in the gene. Results were visualized using the
densityPlot method.

Cell-type enrichment analysis. Processed single-cell RNA sequencing as used in the
FUMA  web app® were downloaded from:  https://github.com/Kyoko-

winb/FUMA scRNA data. For each phenotype and single-cell RNA sequencing dataset,

we performed cell-type enrichment analyses (one-sided tests) using the geneSetAssoc
method, adjusting for the average expression across cell-types in addition to CDS length
and the number of variants in the gene. Expression values were limited to 10 standard

deviations from the mean.

Results
gdb format: efficient storage and retrieval of genotypes and annotations

RVAT efficiently stores large sequencing datasets, along with related sample and variant
annotations, in a novel file format named gdb. The gdb format is built upon the widely-
used SQLite database engine (Figure 1). A gdb can be generated directly from a VCF file
using the buildGdb method, allowing parallelization by processing the VCF file in chunks.
Each variant is assigned a unique indexed identifier ("VAR_id’) to facilitate rapid queries,
while sample genotypes are compressed per variant for efficient storage. As shown in
more detail in the 'Performance’ section, the resulting gdb-file is approximately 80 times
smaller than a gz-compressed VCF file. Being a fully relational database, the gdb
seamlessly integrates the genotype data with a wide array of annotations (e.g. variant
effect predictions and sample phenotypes), whilst efficiently performing complex queries,
including combinations of table joins, filtering, and grouping operations. These operations
are facilitated through easy-to-use R methods such as uploadAnno, getAnno, getCohort
and getGT, while advanced users can also directly execute SQL queries either via the
command-line or through R SQL interfaces like RSQLite and dbplyr. Using the subsetGdb
method, users can export subsets of a gdb, while retaining all links between genotype
data and imported annotations. This simplifies the extraction of prioritized genes or
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genomic regions for data sharing or subsequent in-depth exploratory analyses on a local
machine. Together, the gdb format conveniently facilitates both large-scale analyses (i.e.

on a high-performance cluster) as well as targeted, interactive queries.
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Figure 1. Schematic representation of the gdb file format. The gdb file can be created directly
from a vcf file using the buildGdb method. Genotypes are compressed per-variant, and each
variant is assigned a unique indexed identifier ("VAR_id') to enable rapid queries. Integration of
sample and variant annotations (such as variant effect predictions and sample phenotypes) are
easily integrated in the gdb using the uploadAnno/uploadCohort methods, while the
getCohort/getAnno/getGT methods allow for complex queries including table joins, filtering, and
grouping. The gdb-file format is complemented by an extensive range of rare single variant,
region, gene and gene set analyses and visualizations available through the RVAT R and

command-line interfaces.



genoMatrix class: intuitive handling of genotypes and annotations in R

Sequencing datasets often greatly exceed available computer memory, yet researchers
frequently need to extract specific variants, regions, or genes of interest for further
exploration, analysis, or visualization. To this end, RVAT allows rapid and easy access to
genotypes and annotations of interest within the widely used R programming language,
in which users can leverage both specialized RVAT methods described in this paper as
well as the wider visualization and statistical capabilities of R. The RVAT genoMatrix class
represent relevant subsets of the gdb in R (Figure 2), and is built upon the BioConductor
SummarizedExperiment class®* that is specifically designed to store and manage
rectangular biological data along with sample- and feature-level metadata in a
synchronized single instance. By using this and other standard BioConductor classes and
methods, RVAT ensures an intuitive user experience and interoperability with other
BioConductor packages. Genotypes can be retrieved from a gdb using the getGT method
which returns variant, sample and genotype data as a single genoMatrix object. Users
can specify the genome build in order to correctly code the genotypes in the non-
pseudoautosomal regions of the sex chromosomes. A wide array of operations can be
performed on a genoMatrix object, targeting specific cells, variants, samples, or entire
tables. These include operations like variant and sample filtering, genotype masking,
calculating minor allele frequencies, conducting single variant and aggregate association
tests, generating burden scores, retrieving variant carriers and summarizing metrics such

as call rate or carrier frequency across different groups.
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: Samples
GDB | 1ID sex |pheno| PC1

I SAM1| 1 1 245
| sAMz2| 2 0 | -698
| SAMB | 1 0 591 | colData(GT)
I GT[,GT$sex == 1]
| SAM4 | 1 1 14.7
| SAM5 | 2 0 -86.1

getGT () |
: Variant info Assays
| ploidy | w AF | CADD SAM1 | SAM2 | SAM3 | SAM4 | SAM5
| VARL |diploid | 1 |4.1e-5| 14.3 VARL| 0 0 1 0 1
: VAR2 | diploid| 1 |6.8e-5| 57 VAR2 | 1 0 0 0 0
| VAR3 |diploid | 1 |1.4e-5| 8.9 VAR3 | 0 1 1 0 0
| VAR4 |diploid| 1 |5.5e-5| 0.53 VAR4 | 1 1 0 0 1
| VAR5 | diploid| 1 |8.2e-5| 10.8 VAR5 | 0 0 0 0 0
: VARG |diploid| 1 |7.3e-5| 33.0 VARG | 0 0 0 1 0
| VAR? |diploid| 1 |3.6e-5| 22.9 VAR7 | 0 0 0 1 1
I
| rowData(GT) assays(GT)$GT
| GT[1:5,] recode(GT, geneticModel="dominant")
| getAF(GT) aggregateGT(GT)
: getAC(GT) assocTest(GT, pheno = "MND",
I summariseGeno(GT) test = "firth", covar = "sex")
|
-

Figure 2. Schematic representation of the genoMatrix class. The genoMatrix class extends
the BioConductor SummarizedExperiment class. Code snippets in bold represent methods
specific to the genoMatrix class, code snippets in roman represent standard
SummarizedExperiment methods that are inherited by the genoMatrix class. The rows of the
genoMatrix class represent variants and the columns represent samples. Variant info is
accessible through the rowData method and by default includes variant ploidy, variant weights
and allele frequencies (automatically updated when samples are subsetted), along with user-
supplied annotations such as variant pathogenicity scores (CADD in this example). Sample info
is accessible through the colData method, which includes the mandatory sex information along
with user-supplied sample phenotypes. A wide array of operations can be performed on a
genoMatrix object, including operations like variant and sample filtering, genotype masking and
imputation, conducting single variant and aggregate association tests, generating burden scores,

and summarizing metrics such as call rate or carrier frequency across different groups.



varSets: define variant sets based on genomic annotations or unsupervised

clustering

A key feature of RVAT is that it provides a unified interface for various types of aggregate
variant tests. The first step in such analyses consists of defining sets of variants passing
user-defined filters (e.g. based on functional consequence or minor allele frequency)
across genomic regions of interest (e.g. genes, protein domains or clusters of variants).
Consequently, this step typically involves the tedious process of processing, parsing,
combining multiple sources of genomic annotations and variant effect predictions (VEP)
RVAT reduces all this into an intuitive and fast workflow. First, the mapVariants method
efficiently maps variants in the gdb onto genomic features of interest provided in standard
formats such as bed, gff and gtf (used by e.g. Ensembl and RefSeq). Similarly, variant
effect predictions can be incorporated in the gdb and the RVAT website includes tutorials
on generating and integrating established tools such as snpEff, dbNSFP and
AlphaMissense'62526 Second, the buildVarSet method then generates variant sets
based on these feature and annotation tables, which can be weighted by features such
as MAF and predicted pathogenicity. In addition to accommodating grouping variants by
genomic features, RVAT also allows for partitioning the genome using the spatialClust
method that implements an unsupervised spatial clustering algorithm reported by
Loehlein-Fier et al.?’. Variant sets are stored in the RVAT varSet format and collections
of varSets (e.g. all genes, various filters) can be stored on-disk in the varSetFile format.
This avoids the need to hold a large number of variant sets in memory, enables their
reuse for subsequent analyses or queries, and enhances reproducibility. Genes and/or
annotations of interest can be easily retrieved from a varSetFile using the getVarSet
method. Variant sets can then be passed on to the getGT method to load the genotypes
for the variant set(s) of interest or can be used as input for downstream analyses such as
association tests.
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assocTest: a unified interface for single variant and aggregate association

testing

The assocTest method provides a unified and flexible interface to perform both single and
aggregate variant tests. It implements a comprehensive set of statistical tests including
widely used methods such as firth-based logistic regression (burden), the SKAT variance
component test, the SKAT-O omnibus test and the Cauchy distribution based ACAT-v
method'929.282%  Moreover, it supports different genetic models (i.e. additive, recessive
and dominant) and allows for variant weighting based on annotations or minor allele
frequency. In addition to existing statistical tests, a re-implementation of ACAT-V is
included that is robust to case-control imbalance through either saddle-point-
approximation (SPA) or firth correction®®3!. Furthermore, we implemented a fast
resampling procedure to calculate permutation-based empirical P-values for ACAT-v as
well as other tests. Association tests can be performed either interactively on a
genoMatrix in an interactive R session, or from the command-line allowing for
(parallelized) iteration through multiple variant sets. Results from these analyses are
stored in the rvatResult format, which is an extension of the BioConductor DataFrame
class. Test-statistics in an rvatResult object can be visualized using (labeled) manhattan,
qg- and forest plots. Finally, P-values in an rvatResult can be combined through a flexible
implementation of the ACAT method?°, which allows users to combine P-values across,
for example, complementary statistical tests, MAF bins, annotations or genomic features
(e.g. combine transcript test-statistics into one P-value per gene).

geneSetAssoc: rare variant gene set and cell-type enrichment analyses

Gene set and cell-type enrichment analyses can aid in uncovering relevant biological
mechanisms beyond what can be identified among single variants or genes.

RVAT implements a comprehensive set of rare variant gene set analysis methods
(GSA), supported by an infrastructure to import and manage collections of gene sets.

Importing and managing gene sets. Gene sets can be imported into R from the GMT
format that is used in The Molecular Signatures Database (MSigDB)?2, one of the most
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widely used repositories that includes tens of thousands of gene sets including, among
others, ontology (e.g. GO, HPO), oncogenic and cell-type signature gene sets.
Alternatively, users can import custom datasets including user-curated datasets such as
gene co-expression modules defined through WGCNA analyses of custom RNAseq
datasets, lists of known disease genes or even complete single cell gene expression
matrices for use in cell type enrichment analyses. After importing the gene sets, they can
be easily managed, stored and retrieved using the geneSet format, analogous to the
varSet format discussed earlier.

Broadly, the implemented GSA methods can be divided into competitive and self-
contained tests, where the former tests whether genes in the gene set are more
associated with the phenotype than genes outside the gene set, while the latter jointly
tests whether genes in the gene set are associated with the phenotype without
considering genes outside the set®?. Consequently, through testing for an enrichment
relative to the genes outside the gene set, competitive GSA controls for polygenicity as
well as biases such as confounding and technical variability. Self-contained tests, on the
other hand, are generally more powerful but may result in inflated test-statistics in case
of polygenicity or residual biases in the data.

Competitive GSA. The geneSetAssoc method implements two types of competitive GSA
methods which can be performed directly on results stored in an rvatResult. First,
significant genes can be tested for overrepresentation among gene sets using Fisher’s
exact test, where non-significant genes are included as the background. The drawback
of this method is that it relies on a P-value threshold, and therefore reduces the
quantitative information contained in the test-statistics to a binary variable (significant or
not). As a result, enrichment analyses of this kind fail to detect subtle effects across a
larger number of genes where each individual gene fails to reach genome-wide
significance by itself. Therefore, we also implemented a competitive method that doesn’t
rely on a P-value threshold, but instead directly tests for an association between the
strength of association (inverse normal-transformed P-values) and pathway membership
using linear regression. Such an approach is commonly called functional class scoring

(FCS) in literature, and our approach is similar to that implemented in MAGMA for
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GWAS?33# Covariates can be included to account for potential confounding factors such
as gene size and the number of variants. Potential gene-gene correlations can be
accounted for using mixed linear models®®, in which the gene correlations can be
estimated through correlation among burden scores or using a permutation approach.
Additionally, cell-type enrichment analyses are supported in the same framework, testing
for an association between test-statistics and gene expression values in cell-types of

interest.

Self-contained GSA. Self-contained gene set analyses have been performed in several
recent large whole-exome studies in the form of gene set burden analyses'3¢:3". Gene
set burden analyses extend the rationale behind gene burden tests to sets of genes,
aggregating variants across gene sets rather than single genes. These types of analyses
can be computationally demanding since the number of variants to aggregate, especially
for large gene sets, is often many times larger than in single gene analyses. To address
this, we implemented a two-step approach in RVAT. In the first step, burden scores are
generated for each gene and stored in a compressed format. In the second step, gene
set analyses are performed by aggregating the gene burden scores for each gene set,
followed by testing for an association between the gene set burden score and the
phenotype of interest.

Together, RVAT facilitates convenient import and managing of gene sets, and provides

a wide range of GSA methods tailored to rare variant analyses.
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Case studies
Case study 1: Recovering mutation hotspots in ALS

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a
substantial genetic component®-3°. Rare variants in over 30 genes have been linked to
ALS, highlighting the genetic heterogeneity of the disease. In some ALS-linked genes,
such as SOD1, pathogenic variants have been observed across the entire length of the
gene, while in others, such as FUS and TARDBP, pathogenic variants appear to be
concentrated in specific portions of the gene*°. Identifying such mutation hotspots is
highly relevant for unraveling pathophysiological mechanisms, improving genetic
diagnostics and therapeutic development. Here we showcase how RVAT facilitates the
identification of mutation hotspots using both a functional domain-based approach and
an unsupervised spatial clustering approach.

For this case study, we combined WGS data of 9,600 individuals included in Project
MinE with WXS data of 50,000 individuals included in the UK Biobank. Processing and
quality control of the data was performed using an RVAT workflow that includes strict
sample- and variant-level variant control and a tailored approach to eliminate batch
effects in aggregated sequencing data (details of the workflow are described in a recent
publication from our group®). This resulted in a total of 6,436 ALS cases and 48,436
controls after quality control (see Methods)*'3. We focused our inquiry on two known
ALS genes: SOD1 and FUS. We employed two distinct approaches to identify mutation
hotspots in these genes: a supervised approach in which we grouped variants according
to overlap with functional protein domains, and an unsupervised approach that clustered
variants using a spatial clustering algorithm?’.

For both approaches, we first remapped the variants to coding sequence coordinates
(CDS) using the mapToCDS RVAT method. Intronic variants within 12 base pairs of an
exon border were mapped to the corresponding border. For the domain-based approach
we obtained coordinates for Interpro domains, coiled coils, transmembrane helices, low
complexity regions, and cleavage sites from Ensembl (v. 105), and mapped variants to
the domains based on the CDS coordinates obtained previously. In the spatial clustering
approach, consecutive groups of variants that colocalize along the coding sequence using
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the spatialClust method. Both approaches result in variant sets stored in the varSet
format, either for each cluster, or each domain. Subsequently, these variant sets were
used as input for the assocTest method to test for an excess of rare (MAF<0.001) non-
synonymous variants using firth logistic regression.

In FUS, we observed a strong enrichment towards the C-terminus of the coding
sequence (Figure 3). Specifically, the 3’-end spatial cluster showed a substantially
stronger association (OR = 7.05, P = 2.93 x 10”) than seen in the whole-gene analysis
(OR=1.78, P=7.08 x 10*). This finding persists after accounting for the number of tested
clusters using the ACAT method (Pacat-clusters = 1.47 X 10 vs. Punolegene = 7.08 x 104),
confirming that the signal is localized. Moreover, in contrast to the whole-gene signal, the
spatial cluster even reaches the typical multiple testing threshold used in exome-wide
analyses (0.05/18000 = 2.8 x 10F). These findings are in accordance with previous
literature, which showed that pathogenic FUS mutations tend to cluster in the C-terminal
end of the gene, where they are thought to disrupt nuclear import of FUS#4.
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Figure 3. FUS mutation plot. The upper panel shows the coding sequence of FUS, with the y-
axis showing the -logio(P-value) for single variants. The panels below show the whole-gene,

spatial clusters and domains respectively, colored by the -logo(P-value) of the Firth burden test.
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In contrast, for SOD1 the whole-gene analysis was highly significant (OR = 8.01, 1.1 x
10718, Figure S1), while no meaningful spatial clusters were identified (one cluster,
containing all variants and thus identical to the whole-gene analysis), and no meaningful
domain signals were identified (all but one spanned the (near-)entirety of the gene and
thus also resembled the whole-gene analysis). This aligns with previous literature, as
pathogenic mutations have been reported across the entire length of the gene®.

Together, this case study shows how the regional approaches implemented in RVAT
successfully recover a proven mutation hotspot in ALS. Moreover, it is worth noting that
the clustering approach may also prove useful for discovery of novel genes in a genome-
wide setting. In FUS, the clustering approach showed a higher sensitivity (accounting for
the number of tested clusters) than the whole-gene burden test. We additionally evaluated
the SKAT and ACAT-v tests, which are both more powerful than burden tests when the
proportion of causal variants is low{Citation}. Although in this case SKAT indeed had a
higher sensitivity than a whole gene burden analysis (Pskat = 5.81 x 107, Pacat = 1.49 x
10%), burden testing at the level of spatial clusters was more sensitive than either,
substantiating that it can provide a powerful alternative to identify genes driven by regional
hotspots.

Case study 2: Identification of biologically relevant gene sets and cell-types
in the UK Biobank

In this case study we perform competitive gene set analyses on published rare variant
gene statistics, illustrating how biologically relevant sets of genes can be discovered
beyond exome-wide significant single genes. We obtained pLoF gene test-statistics from
the Genebass browser, which includes exome-wide rare variant gene statistics of 4,529
phenotypes based WXS data of 394,841 individuals included in the UK Biobank?'.
Specifically, we focused on several traits highlighted in the corresponding article by
Karczewski et al.: LDL-cholesterol, bone mineral density, red blood cell count and white
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matter integrity. Ontology gene sets were downloaded from MSigDB??, and were imported
into the RVAT geneSetFile format using the buildGeneSet method. Competitive GSA was
performed using geneSetAssoc method, adjusting for the number of variants included in

the gene and the total coding sequence length.
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Figure 4. RVAT gene set summary plots. Density plots showing the Z-score distributions
(inverse normal transformed P-values) of (A) red blood cell counts (RBC) for the gene set
‘Erythrocyte Inclusion Bodies’ and (B) bone mineral density for the gene set ‘Canonical WNT
Signaling’. The distribution of the background genes and genes within the gene set are shown in
orange and blue respectively. The upper panels show the Z-score distribution including all genes,
whereas the lower panels show the Z-score distribution excluding exome-wide significant genes
(P < 2.5 x 107). The vertical lines represent the mean Z-scores. In panel (A), the difference
between Z-scores is large when including exome-wide significant genes but greatly diminishes
upon rerunning the gene set analyses excluding them, thus indicating that the significant genes
primarily drive the observed gene set signal. In panel (B) the Z-score difference largely remains
upon excluding exome-wide significant genes, thus suggesting that a multitude of genes

collectively drive the gene set association.

0.0 in_geneset
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Numerous significant gene sets were identified (P < 3.3 x 106, Table S1), including many
gene sets relevant to the respective traits. For example, the gene sets bone
morphogenesis, WNT signaling, and ossification were associated with bone mineral
density; genes related to polycythemia, increased hematocrit and oxygen binding were
associated with red blood cell counts; genes related to sterol homeostasis, premature
arteriosclerosis, and hypercholesterolemia were associated with LDL levels; and extrinsic
component of (post-)synaptic membrane was associated with white matter integrity. We
next sought to establish to what extent the identified gene sets were driven by exome-
wide significant genes, as gene set associations that are primarily driven by one or two
genes, may not be sufficient to draw broad conclusions about the involvement of the entire
gene set.To that end, we reran the gene set analyses, excluding genes passing the
significance threshold employed by Karczewski et al. (P < 2.5 x 107)?'. This showed that
a substantial proportion of findings were primarily driven by a small number of significant
genes (Figures S2-3). Examples include the RBC-associated gene sets ‘Erythrocyte
Inclusion Bodies’ (Figure 4A, densityPlot method) and ‘Decreased mean corpuscular
volume’ (Figure S4), as can be clearly observed from the Z-score distributions. On the
other hand, several relevant gene sets remained significant, indicating that the observed
association was not solely driven by individual genes, thus suggesting a multitude of
genes collectively drive the gene set association. Examples include the bone density-
associated gene sets ‘Canonical WNT signaling’ (P = 3.59 x 107, Figure 4B) and
‘Ossification’ (P = 4.26 x 106, Figure S4), both showing a clear mean shift in Z-scores
that is not solely driven by a small number of genes. Among the top sub-significant genes
in these gene sets were several relevant genes including LRP4 (P = 7.12 x 104; mediates
bone formation inhibition and is related to the highly significant gene LRP5), SOST (P =
1.55 x 10°; encodes the sclerostin protein), COL1A2 (P = 4.52 x 10-%; encodes the pro-
alpha2 chain of type | collagen) and MRC2 (P = 1.56 x 10°; encodes a protein involved

in extracellular matrix remodeling).
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Figure 5. Single cell-type enrichment analyses. Quantile-quantile (qq) plots showing observed
single cell enrichment test statistics (-log1o(P-value)) versus expected —log+o (P-values) under the
null model for (A) red blood cell counts (RBC) (B) bone mineral density. Labels indicate the
experiment name and cell-type respectively, separated by a colon. The red line indicates the
significance threshold (P < 2.9 x 10®).

In a similar vein, we performed single-cell RNAseq (scRNA-seq) enrichment analyses
using 51 publicly available scRNA-seq datasets?3. Enrichment analyses were performed
using the geneSetAssoc method, adjusting for average expression across cell-types in
addition to the covariates employed in GSA. This revealed several significantly enriched
cell-types relevant to the traits studied (P < 2.9 x 10°°; Figure 5, Figure S5 and Table S2).
These include, among others, erythroblast cell subtypes (enriched for gene level
association signals with red blood cell counts, P = 4.4 x 10°%), endothelial tip (enriched for
gene level association signals with bone mineral density, P = 1.8 x 10®) and liver
hepatocytes (enriched for gene level association signals with LDL levels, P = 5.4 x 10).
While the liver hepatocyte enrichment in genes exhibiting rare variant associations with
LDL was primarily driven by exome-wide significant genes, several other enriched cell-
types were not (e.g. the endothelial tip and erythroblast enrichments), suggesting a
concentration of rare variant signal in relevant genes that have yet to reach exome-wide

significance (Figure S6).
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Together, these analyses highlight how RVAT’s rare variant competitive gene set and
cell-type enrichment analyses can aid in uncovering relevant biology beyond single

genes.

Performance

We tested the performance of RVAT by benchmarking several key aspects of RVAT using
an exome dataset (Project MinE*? and UK Biobank*?), consisting of ~60,000 samples and
~15 million variants (569,546 samples and 14,889,039 variants respectively). We first
converted the gz-compressed vcf (3.7TB) to the RVAT gdb format, which completed in
734 CPU hours and required less than 8GB RAM on a computer cluster equipped with
AMD EPYC 7702P 64-Core Processors. The resulting gdb file was significantly smaller,
approximately 80x, with a size of 47GB compared to the input gz-compressed VCF-file of
3.7TB. We should note that the gdb format is not lossless as it retains variant info and
genotype calls, while omitting other per-call metrics such as genotype quality and depth.
None of the RVAT workflows, however, require these metrics.

To demonstrate the efficiency of RVAT, we show that the equivalent of a modern laptop
is sufficient to perform a range of analyses on the ~60K samples and ~15M variants
included in the gdb. All analyses below were performed on a single 2.60GHz processor
(6 cores) with 16GB of RAM. First, we used the mapVariants method to map all 15M
variants to Ensembl gene models (gff format), which completed within 2 minutes (114
seconds). Subsequently, the uploadAnno method was used to map variant effect
predictions generated by snpEff'® and dbscSNV'” onto the gdb, which took approximately
7 minutes (431 seconds)

With the gene models and annotations in place, we generated non-synonymous variant
sets for all protein-coding genes using the buildVarSet method, which took less than a
half a minute (22 seconds). These variant sets were then used as input for exome-wide
burden tests, employing firth logistic regression to test for an association between
aggregated rare variant count (MAF < 0.001) and MND status (motor neuron disease).
Burden tests were performed for a total of 17,149 protein-coding genes, and took
approximately 11.3 hours, averaging around 2.4 seconds per gene. The resulting test-
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statistics were used as input for competitive GSA across 15,473 ontology gene sets
(MSigDB??), which took less than a minute to complete (47s). Finally, we benchmarked
loading genotypes into a genoMatrix in R, for interactive downstream analyses or lookups,
which took about half a second for 100 variants and ~60K samples.

Combined, the above benchmarks show that various steps involved in an exome-wide
burden analysis, such as variant annotation, variant set generation, burden analyses and
gene set analysis, can be completed overnight on a single CPU. To speed up analyses
further and/or accommodate larger datasets, RVAT enables parallelization via its
command-line interface (CLI). The RVAT website provides tutorials and pipelines

demonstrating how to use RVAT in parallel on a computer cluster.

Discussion

Through a series of example use cases we have demonstrated that RVAT addresses
unmet needs for functions that enable flexible and interactive mining of large genetic
datasets for analyses of rare variant contributions to health and disease.

The RVAT gdb file format is built upon SQLite, a highly efficient and reliable database
engine that is widely used across scientific disciplines and industries. Consequently, the
gdb file format shares the strengths of a relational database, providing consistent storage
of multiple linked data tables and facilitating complex queries that involve various
combinations of these data types. We demonstrate that the gdb format is well-suited for
storing and analyzing genetic data, which typically involves a variety of variant
annotations, gene annotations, variant pathogenicity scores and phenotypic / clinical data
for individual subjects. The indexed per-variant genotype compression ensures that the
gdb is both storage-efficient (~80x smaller than a compressed vcf-file) while facilitating
rapid genotype querying (loading 100 variants for 60K samples into R takes about half a
second). gdb files are also highly portable and support easy resharing of linked data fields
while subsetting operations make it easy to export reduced gdb for regions of interest
while still maintaining all desired links between genotype, variant and sample level data.

RVAT avoids specific hardware dependencies, and we demonstrate that the framework
is sufficiently lightweight and efficient to enable genome-wide rare variant association
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screens of large sample numbers on the equivalent of a modern laptop. We also provide
extensive documentation and multiple tutorials with example data to support ease of use.
Moreover, RVAT is written in the open-source R programming language and both its
functions and object types are fully integrated with the Bioconductor ecosystem. This
decreases the learning curve and time investments needed by users to start new
analyses and to further extend the functionalities of RVAT for niche applications with new
custom scripts or other BioConductor packages. As example, in previous work we
demonstrated that the core functionalities of unpublished RVAT prototypes enabled
successful large scale rare variant association analyses of tens of thousands of
subjects’®"3. These studies respectively yielded the discovery of genes with high effect
size associations to amyotrophic lateral sclerosis and Parkinson’s disease. A key strength
in the use of RVAT within these studies was the ease of deploying new subcohort
analyses, adaptive variant quality control and target gene sensitivity analyses that
enabled us to overcome confounding technical artefacts.

In this study we also further extended RVAT with gene partitioning and gene
aggregating analyses to tackle key challenges in not only the discovery of rare variant
associations, but also the correct interpretation of these associations. The first case study
showcases how relevant mutation hotspots can be identified by utilizing several
integrated components of RVAT, including spatial variant clustering, domain mapping,
rare variant testing and RVAT visualizations. This framework enables researchers to fine-
map genetic risk and estimate variant effect sizes within subgenic regions. Our results
demonstrate how this can influence the interpretation of variants of unknown significance,
and thus models to be considered for genetic testing and experimental analyses of
disease gene biology. The second case study illustrates how our rare variant adaptations
of competitive gene set and cell-type enrichment analyses can use publicly available
summary statistics to reveal relevant biology beyond what is found in individual genes.
While gene and cell-type analyses are widely applied in GWAS?, their adoption in the
context of rare variant analyses is limited. RVAT addresses this gap by providing a
comprehensive framework for managing and importing gene sets, performing gene-set
and cell-type enrichment analyses, and visualizing the results.
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The RVAT package has some limitations. First is that simultaneous writing to a gdb by
multiple users is not currently possible. This ensures that conflicting user operations do
not cause data corruption but does introduce a requirement for coordination amongst
users wishing to simultaneously upload new annotations to a shared gdb. RVAT is also
specifically optimized for analyses relating to rare variant association testing. As such,
while it is possible to use RVAT within custom code to analyze variant segregation in
families, we have not optimized RVAT for this purpose. Finally, tools such as Regenie
efficiently calculate regression offsets that are reported to aid rare variant analyses of
large-scale biobank data. If desired, RVAT provides functionality to import these offsets
generated using a dedicated tool such as Regenie. In this setting users can adjust their
analyses for these offsets while still leveraging unique advantages of RVAT including its
data structure, convenient R interface, optimized data querying functions and unique
functionalities such as gene partitioning and geneset / cell type analyses.

As part of on-going work additional functionalities are being incorporated in future
versions of RVAT. These will include an interactive result browser, analyses to support
survival analyses, additional analyses for unsupervised variant clustering and additional
analyses tailored to addressing challenges of studying rare variation in the non-coding
genome. RVAT also already incorporates functions to facilitate use cases beyond the
scope of this study, including analyses of recessive disease models and sex-linked
chromosomes, a dedicated CLI interface and features to support effective deployment on
high-performance computing environments. Full details of these aspects as well as
function documentation and tutorials with accompanying example datasets are available
on the RVAT website (https://kennalab.qgithub.io/rvat/).
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Figure S2. Competitive GSA test statistics ( -logio(P-value)) excluding (y-axis) and including (x-
axis) significant (P < 2.5 x 107) genes for (A) bone mineral density (B) red blood cell counts (C)
LDL levels (D) white matter integrity.
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GO gene set ‘Ossification’ and (B) red blood cell counts (RBC) for the HP gene set ‘Decreased

Mean Corpuscular Volume’. The distribution of the background genes and genes within the

geneset are shown in orange and blue respectively. The upper panels show the Z-score
distribution including all genes, whereas the lower panels show the Z-score distribution

excluding exome-wide significant genes (P < 2.5 x 107). The vertical lines represent the mean

Z-scores.
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Figure S5. Single cell-type enrichment analyses. Quantile-quantile (qq) plots showing
observed single cell enrichment test statistics (-logio(P-value)) versus expected —logio (P-
values) under the null model for (A) LDL-cholesterol (B) white matter integrity. Labels indicate
the experiment name and cell-type respectively, separated by a colon. The red line indicates the
significance threshold (P < 2.9 x 10®).

A bone mineral density

B RBC

8

.
DropViz_all_levelt: PC.Endotheli tip ®

MouseCellAtias_all: Neonatal Skin.S

~logo(P) excl. significant genes
I

MouseCellAtias_all: Neonatal_SkinMescle_cell Lrrc15_high

MouseCellAtias_all: Bone ‘Marrow. Eosinophils @

scle.Eryhroblast_Car2. high
o

Mg

@ MouseClAlas all: Fetal_Liver Erythroblast_Hba.a2_high

~log,o(P) excl. significant genes

0 2 4 6
~logo(P) incl. significant genes

LDL

(@)

(]
®’e
X

~logo(P) excl. significant genes

~log1o(P) incl. significant genes

TabulaMuris_droplet_all: Liver hepatocyte ®

0 2 4 6
~logo(P) incl. significant genes

D  white matter integrity

o
%
3 i
o
]
e
[ ’
o L
& &
8
£
)
3
°
2
3
o<
%, £.
o
8
\
0
2 T T T T
0 1 2 3

~logso(P) incl. significant genes

Figure S6. Single cell enrichment test statistics ( -logio(P-value)) excluding (y-axis) and
including (x-axis) significant (Pgene < 2.5 x 107) genes for (A) bone mineral density (B) red blood
cell counts (C) LDL levels (D) white matter integrity.



Supplementary tables

Table S1: Gene set analysis results per trait.
Table S2: Single cell enrichment analysis results per trait.
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